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P R O P A G A T I O N  OF A C O U S T I C  SIGNALS 

IN A T W O - P H A S E  M E D I U M  OF SLUG S T R U C T U R E  

A. O. Maksimov UDC 534.13 

The theoretical description of the characteristics of propagation of acoustic signals in a gas-liquid 
mixture of plug-train structure has been so far based on relatively simple models that assume either a periodic 
slug arrangement or the existence of a weak irregularity in the sizes of liquid plugs and gas slugs. 

In the present paper, we propose using a random telegraphic process to define the acoustic 
characteristics of a two-phase medium, which change successively from slugs to plugs. The essentially one- 
dimensional nature of plug-train flow allows us to apply the developed methods of the theory of one- 
dimensional unordered media and obtain a closed system of equations for description of the statistical 
characteristics of an acoustic field. The solution of these equations permits one to analyze a number of effects 
(passage through a layer and statistical parametric resonance) and demonstrate the distinctive features of 
wave propagation in a mixture of slug structure. 

Gas- and steam-liquid mixtures can move at various regimes (bubble, slug, core ones, etc.) [1, 2]. At 
present, acoustic-wave propagation in a liquid with bubbles has been studied in sufficient detail [2, 3]. Less 
attention has been given to the description of acoustic perturbations in a mixture of slug structure. At the 
same time, the essentially one-dimensional character of this flow allows one to use the developed procedures of 
the theory of one-dimensional unordered systems and to obtain, in a number of cases, an exact and, therefore, 
far more detailed description compared with analysis of wave propagation in bubble media. 

We shall use the slug-flow model by Lezhnin [4], which also finds application in analysis of one- 
dimensional unordered media [5]. Figure i shows a diagram of the slug-flow structure. The sizes of alternating 
gas (steam)/9 and liquid Ii layers are variable. The gas is considered ideal with specific heat ratio 7. Fluid 
friction against the channel walls and interphase friction are ignored. A plane wave Pin exp[- ikl(z  - L) - iwt] 
(kl = W/Cl), where w is the wave frequency, falls from the right of a homogeneous medium with density pl 
and sound velocity q on a two-phase mixture. The scattered wave R exp[ikl ( z -  L) - iwt]  is in the same area. 
The transmitted wave Ptr exp[- ik3(z -  Lo ) -  iwt] (k3 = w/c3) is in the homogeneous medium with parameters 
ps and cs to the left of the two-phase flow area. 

The theory of propagation of acoustic pulses in a periodical slug structure with allowance for nonlinear 
distortions has been developed in [6]. Taking into account a weak irregularity in slug and plug sizes allowed 
Lezhnin et al. [4] to obtain small corrections to the law of wave dispersion. Analysis of an essentially 
heterogeneous situation [5] is an interesting but special problem: the search for acoustic analogues of the 
Anderson localization in one-dimensional systems. 

Acoust ic  Mode l  of Slug Flow. The easy-to-grasp pattern of acoustic perturbations, which have 
the shape of plane waves propagating in opposite directions within each layer and scattering at interfaces 
(with the conditions of pressure P and velocity v continuity satisfied), can also be described by the continuity 
equations: 

Ov OP Op Ov 
po(z)~t = Oz' 0---t + p ~  =0'  P-"  C2o(Z)p. (1) 
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Fig. 1 

Here the density po(z) and the sound velocity co(z), which vary from slug to plug, can be defined by introducing 
a random telegraphic process s(z): 

P0Cz) = [(pf "~" pg) "~- (pf -- pg)S(Z)]12, C0(Z) ---- [(Of -~- Cg) "~- (Of -- Cg)3(Z)]I2, 

where p / a n d  pg are the densities and cf and Cg are the sound velocities in a liquid plug and in a gas slug, 
respectively; s(z) is a random telegraphic process which takes on the values +1 and -1 .  Let us give the 
statistical characteristics of the telegraphic process [7] as applied to the problem considered. 

The probability density that the liquid plug is at the point z ~ has the form 

ly 

and the probability density that the gas slug is at the same point is of the form 

lg 1 Ig [- 
Here 6+z = 1 if the liquid plug is at the point z, and 6+z = 0 if the slug is there; similarly, 6_~ = 1 for the 
gas slug and ~-z = 0 for the liquid plug (evidently, P+ + P_ = 1), l / a n d  Ig are the average sizes of liquid 
plugs and gas slugs. The conditional probabilities that a continuous liquid Pf(1) -- ( l / l / ) e x p ( - I / I f )  or gas 
Pg(1) = (1/Ig) exp(-I / Ig)  layer is in the interval I define the distribution of liquid plugs and gas slugs. We can 
now determine the average characteristics of the medium's parameters: 

(~) = l:  - Zg l:  lg (~o(z)) = ~: Is Ig 
If -}- Ig' (PO(Z)) = [ f  ~ ~- Pg if  + lg' If -~ lg "~ Cg If + lg" 

The problem of wave scattering over the layer can be reduced to the boundary-value problem for 
acoustic perturbations inside the medium. Indeed, according to (1), the acoustic perturbations at the frequency 

in slug flow are described by the system 

dv iw dP 
dz = p0(z)c02(z) P' d--7 = i : 0 ( z ) ~ ,  (2) 

and satisfy boundary conditions of the kind P(Lo) + zsv(Lo) = 0 and P(L) - z lv(L) = 2, where L0 is a 
coordinate of the left boundary of the slug, L is a coordinate of the right boundary, Zl = plcs, z3 = pscs, and 
the incident-wave amplitude Pin is chosen as a measuring unit. 

Equa t ions  of Invar ian t  Immers ion .  Satisfaction of the principle of dynamic causality is one of 
the indisputable criteria for applicability of the present-day methods to analysis of stochastic equations. 
Unfortunately, this criterion is not valid for the above-formulated boundary-value problem, because P and 
v in (.)z are functions of all the values of s(z) in the interval L0 < z < L; moreover, even the boundary 
conditions are a functional of the field s(z). In view of this, we shall use, according to [8], the invariant- 
immersion procedure which permits one to go from the boundary-value problem to the problem with initial 
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data (Cauchy problem). For the latter problem, the principle of dynamic causality is satisfied; therefore, under 
certain assumptions on the statistics of the process s(z) it turns out to be possible to derive an equation for 
the probability density of solution of problem (2). 

The nondependence (invariance) of the coefficients of the equation and boundary conditions (2) on the 
layer thickness allows us to obtain the equation for the pressure field P(z, L) using the immersion parameter 
L Is]: 

OP(z,L)oL = - iP ( z 'L )  [ -  k2z--22 + kz(~--~2zlz2~) 

dP(L, L) k2z2 ( 2  2 
= - 2 i  (1 - P(L, L)) - i k2'z2 - ZlJp2(L, L), P(Lo, Lo) = 

dL zl 2ZlZ2 
2z3 

Zl + z3" 

(3) 

Here P(L, L) is the pressure at the right boundary and P(L0, L0) is the pressure at the left boundary when 
the layer thickness tends to zero, k2(z) = w/co(z), and z2(z) = po(z)co(z). 

It is convenient to select explicitly the average and fluctuation components in the coefficients of this 
equation: 

k (zl - 

2ZlZ2 

If lg / 1  \ 1 If 1 lg (po) = - -  +pg \ / = 

Pf If "at" Ig If 7 lg' p -~  P74 If 7 l; "+ pgC i If + l#" 

k2Z2zl = kl [(p~lz)) + (Pf - Pg) (s - 

kl[[(Po(z)) 2 1 1 1 
= 'IL  Px X(po--qo)] + Px  (pi- i 

W e a k  F l u c t u a t i o n s .  We shall begin an analysis of system (3) with the simplest case where the 
fluctuations are weak and can be ignored. In this case, the slug flow is a medium with the effective average 
parameters, and system (3) takes the form 

OP(z,L) 
OL 

dP(L,L) 
dL 

- -2ik (P~ - P ( L , L ) ) -  Y L  

2z3 
P(Lo, Lo) = zl + z3 

(4) 

A solution of (4) can be found directly; however, it is possible to obtain it in a simpler way using the original 
system (2), because the medium's effective parameters - -  the sound velocity 1/c2m = (po)(1/poc 2) and the 
acoustic impedance z,~ = (po)c,-. - -  can be determined immediately. After that, the problem represents a 
classical example from the theory of wave propagation in stratified media [9]. 

The formulas a(L) = exp(+ik,r,L)(1/2)[(1 - z,n/zl) + (1 + z~/zl)R] and b(L) = exp(-ik,nL)(1/2)[(1 + 
z,,,/Zl) + (1 - z~/zl)R] describe the wave amplitudes a and b in the area of two-phase flow P(z, L) = 
a(L) exp(-ikmz) + b(L) exp(ik,..z), while the amplitude of the reflected wave is 

R(L) = 
[(gin -- gl)/(Zl "1- gin)] "q- [(Z3 -- Zm)/(Z3 "+ Zrn)] exp [2ik,.(L - L0)] 

i + [(Zm- Zl)/(Zm + Z1)][(Z3- Zrn)/(g3 + z,n)]exp[2ikm(L- L0)]" 

The most typical case, where media 1 and 3 are the same fluid in which a train of slugs propagates, deserves 
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consideration. In this case, Zl = z3 = p / c / and  then 

- - zm/zl ~ exp[2ikm(L - L0)]}. R ( L ) =  - ( ~  T ~ ) { 1 - e x p [ 2 i k , , , ( L -  L 0 ) ] } / { 1 -  ( i  +z,,,/zz] (5) 

Let us draw a comparison with the known results, in particular, with the expression for the velocity of 
acoustic-signal propagation in a two-phase mixture of slug-train structure [4]: c 2 = [TPo/p/~(1 -~o)], where 
P0 is the static pressure and ~o is the volume gas content of the mixture [4 = Ig/(l/+ lg)]. Comparing this 
expression with 

P'f l-/"~g + P U l-~"-~g ) t, p ;c2 I/+ l-----gg + p/c} If + I g 

we see that the coincidence is complete: c2m = c2g(pg/pl)(I/+ Ig)2/lllg for the most typical cases where 
(po) ~ p/Ii/(ll + Ig) and (1/poc~) ~ (1/pgc})(lg/(ll + lg)). However, the model used is also applicable to 
other situations, for instance, for description of multiple foams (Ig >> If). 

It should be noted that a similar expression for the sound velocity in a slug mixture for any gas content 
was obtained by the methods of acoustics of stratified media in [10]. This coincidence and the reference [10] 
were pointed out to us by the referee. 

Since zm/zz ,~ (Cm/Cl)(I//(l f + lg)) << 1 (c~ is much less than the sound velocity both in the gas and 
in the fluid), the sound reflects from a train of slugs as from an absolutely soft medium except for the cases 
where an integer number of half-waves is contained in the area occupied by two-phase flow and the medium's 
bleaching takes place (R ~ 0). It should be stressed that we deal with the wavelengths in the slug-flow area, 
in which Am = (Cm/Cf)Az << Az (A1 = 2~r/kz). 

The  E i n s t e i n - F o k k e r - P l a n c k  Equa t ion  (EFP) .  In the general case where the fluctuations are 
significant, we should determine the mean and correlation characteristics of the pressure field on the basis of 
the system of stochastic equations (3). Attempts to average (3) directly will lead to a linked chain of equations 
for the moments. In view of this, one proceeds in a different way in finding the statistical characteristics of 
boundary-value problems [8, 11]. For the corresponding Cauchy problem, one constructs a linear Liouville 
equation whose averaging does not involve serious difficulties for simple fluctuation models (the random 
telegraphic process is among them). 

It can be easily verified [8] that ~ot,(U, UL) = 6(P(z ,L) -  U)6(P(L, L) -UI,) satisfies the Liouville 
equation as a function of the variables L, U, and U/;. Since P(z, L) and P(L, L) are complex-value functions, 
~z(U, U/;) depends, apart from L, on four arguments: either the amplitudes and phases or the real and 
imaginary parts. Recall that P(z, L) and P(L, L) are the solutions of system (3), which correspond to a 
definite realization of the process s(z). 

The probability density of realization of the solution of (3) is obtained by averaging ~oL(U, Us over an 
ensemble of random quantity s(z): Wz(U, Uz) = (~oL(U, UI,)). The initial condition for Wz(U, U/;) has the form 
[8] WL(U, UL)IL=z = ~5(U-Ut,)(qoz(Uz))(PL(z, L)l/;=z = P(z, z)). In view of the closure of the Riccati equation 
for P(L, L), the Liouville equation for ~L(UL) = 6(UL - P(L, L)) can be obtained independently. In this case, 
the initial condition for the probability density of the field distribution at the boundary Wt,(UL) = @L(UL)) 
has the form WL(UL)IL=Lo = 6(UZo - 2z3/(z1 + z3)). Below, we shall restrict our consideration to the case 
where zl = z3 and WL(UL)IL=I. o = 6(UL0 - 1). 

According to [11], we shall express P(L, L) in terms of the reflectance R(L, L) = P(L, L) - 1 and obtain 
an EFP equation for the probability density of the reflectance-amplitude and phase distribution WL(p,x) 
JR(L, L) = PL exp(ixL)] for reflection from the two-phase medium of slug structure in the form 

--~ + (AWL)+ (CWL) = D B + ~ WL, D= (l l + lg)3. (6) 
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Here 

k l [ ( p o )  2 i l 2 
-"  - c l (p -~n2 ) j (pz  - 1 ) s i n  A(pL,XL) T xL; 

C(pL,XL) = 2kl(P0)pl ~1.2 L[(P0)pl --plC~(P0--~)][2"I-(PL't- ~)COS~L]; 

F(pL, XL) : kl(Pf-Pg) ~1 [(P)'-. Pg) 2( 1 1 l1 [2 "j" (PL-]- 1 )cosxL]. 
Pfr pgC~ ~- 

This equation was obtained under the assumption that the statistical characteristics of the acoustic 
signals whose wavelength exceeds considerably plug and slug sizes change only slightly on these scales. In the 
approximation considered, all the specific features of the telegraphic process are taken into account in the 
diffusivity D. 

The physical conditions for the validity of this diffusion equation correspond to the situation where 
the wave has already undergone a sufficiently large number of collisions at the boundaries of slugs and plugs, 
and one can be satisfied with an averaged description of its behavior at greater distances in comparison with 
the sizes of individual plugs and slugs. 

To solve (6), we shall use the following approximation [11], which permits us to simplify considerably 
the EFP equation. The point is that with no regard for fluctuations, the reflectance changes on the scale equal 
to the half-wavelength (Am/2 = r/km) of the perturbation propagating in the two-phase medium [see (5)], i.e., 
R(L) is a rapidly oscillating function. On the other hand, since Am >> lg and II, the statistical characteristics 
of the acoustic perturbation change only slightly on the wavelength; in analyzing these perturbations, one 
can average (6) over the oscillation period. The probability density itself, which is, by definition, a quantity 
averaged over the ensemble of realizations of the random quantity s(z), will not change on this scale; therefore, 
only the coefficients of Eq. (6) are subject to averaging. As a result of this procedure, we obtain a simpler 
equation [8] with coefficients that depend only on X' = X - (kin, L - L0): 

o L  = B;,,F)+ 

Here we used the fact that ~[ = 0 and ~/~ = 0. The bar denotes averaging over the oscillation period. 
Further simplification consists in integration of (7) over X', which produces the EFP equation for 

wL(p): 

OW-s 
-D  ff---~(B~B- BIx,F)Ws D ~p2 B-~ Ws 

-8-s  = 

or, writing the coefficients explicitly, we obtain 

l g2 2 (12 fC} ~ 2 
8(lff~-~ lg) 3 k, pgCg 2 ] " b k~ 

Since this equation differs from that considered in [8, 11] only by the form of diffusivity, we shall give its 
solution immediately. 

It is convenient to change over to the variable u = (1 + p2)/(1 - p2). For the distribution-probability 
density u, we have [8] 
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OO 

exp[-/)(L - L0)/4] f dx xexp[ - z2 /4 / ) (L  - L0)] 
WL(U) = ~ L~ 3/2 u Ccosh z - cosh u (8) 

The mean values are calculated directly using the solution obtained. The square of the reflectance modulus 
is described by the expression 

OO 

( [ R ( L ) [  2) = 1 - 47r - 1 / 2  e x p [ - / ) ( L  - L0)/4]  / dx 

0 

x 2 exp(--x 2) 

cosh  - L0)  

whereas using the relation ([Ptr 12) = 1 - ([R(L)[2), one can also determine the transmissivity through the two- 
phase flow layer. Let us give the asymptotic expression [12] ( L -  L0)/)/4 >> 1 for ([Ptr[ 2) ~ 0.5~ "5/2 e x p [ - ( L -  
Lo)D/4](4/D(L - L0)) s/2. 

The transmissivity index /)(L - L0) is related closely to the Lyapunov index 6 (6 -- /)/4), which 
was the subject of the numerical calculations presented in [5]. Comparison of these quantities shows good 
agreement both in the functional dependence/)  ,,- w 2 (for the long-wave regime (Am >> l I and Ig) in the 
Sornette-Legrand classification scheme [5]) and in the order of magnitude. 

Unfortunately, a direct comparison with the experimental data [4] does not seem possible for the 
following reasons. First, the fast-oscillation approximation is inapplicable for the reflectance under the 
conditions of [4], because for a perturbation duration v ,~ 15-500 msec, the wavelengths Am ~ cmr turn 
out to be comparable with the length of the working section of shock tubes (0.8 and 2.5 m). 

Second, which is more important, the difference in the impedance characteristics of the fluid and of 
the gas is so significant that scattering by fluctuations remains strong for these wavelengths. Thus, under the 
conditions of [4]: v = 20 msec, Ig = 0.04 m, and r = lg/(Ig q- If) = 0.3, the diffusivity /), which has the 
dimension of inverse length, is of the order of 3000 m -1 and exceeds 171 and I~ "1 considerably. This indicates 
the inapplicability of the assumption that made the transition to (6) possible. The perturbation proves to be 
insufficiently long-wave for the character of its interaction with fluctuations to have the form of a diffusion 
process. 

Stochast ic  P a r a m e t r i c  Resonance  in a Two-Phase  M e d i u m  of Slug S t ruc tu r e .  We shall 
consider statistical characteristics of an acoustic field inside a two-phase medium. As we have already verified, 
the procedure for averaging over a fast variable is very efficient for wavelengths I I and lg << Am, where 
Am << 1//). The last condition means that fluctuations of the acoustic characteristics of the medium are, in 
a definite sense, small. However, not all spatial harmonics of these fluctuations play the same role. We shall 
take advantage of a formal analogy between Eq. (3) for reflectance and the equation of a linear oscillator 
with fluctuating parameters, in which k2m plays the role of eigenfrequency [12]. Since the perturbation is 
small, we can assume, as is assumed in the theory of parametric resonance, that wave propagation in a two- 
phase medium is affected considerably by fluctuations either with short wavelengths (q << kin) or with the 
wave vectors :k2km + q. The existence of resonant configurations will lead to the occurrence of wave-field 
characteristics growing deep in the slug flow. Let us strengthen the above reasoning by formal calculations. 

It turns out to be possible [8] to express such a characteristic as the sound-field intensity I(z, L) = 
P*(z, L)P(z,  L) in terms of the reflectance R and thereby to use to a considerable extent the results of the 
previous section. Indeed, from the first equation of system (3) we obtain the foUowing integral representation 
for I(z, L): 

L 2 2 
I ( z ,L )  = / ( z ,  z)exp {-i/k2(,z--~2z--zl) (R(L') - R'(L'))  dL'},  

z lZ2 
Z 
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and from the second equation we obtain the integral identity 

(1 -IR(L)I 2) 
(1 -IR(z)l 2) 

L k2(z] - z~)(R(L') dL'}. 
:,:;, 

z 

As a result, we have I(z, L) = I0(1 + R(z))(1 + R'(z))(1 - [R(L)[2)/(1 - [R(z)[2), where I0 is the intensity of 
the incident wave, and the asterisk refers to complex conjugation. As above, it is convenient to go from the 
variable p to u = (1 + p2)/(1 - p2) and express explicitly the dependence on the rapidly varying phase Xz: 

I(z, L)= 21o[   + 1 cosx,]/(i + 

Since the effect we analyze occurs at distances much longer than the wavelength, it is expedient to consider only 
the slowly varying part of I(z, L), i.e., to change over to the phase-averaged quantities denoted by the subscript 
a. Thus [8], L(z ,  L) = 2Iou~l(1 + UL), I~(z, L) = 2102(3u~ - 1)/(1 + uL)2, . . . ,  x~Cz, L) = g,  Cu,)/(:  + u t )" ,  
where g,,(u) is the nth-degree polynomial in u. 

The intensity moments can be found in quadratures using the solution of the EFP equation (8). 
However, since the corresponding calculations involve a very peculiar technique (Moller-Fock transform), we 
shall give only the final result: 

oo oO 
sinh/~r 

(I2(z, L 1) = ~r exp [ - / ) (L  - z)/41 / din, cosh ~,r K , ( ~ ) e x p [ - ~  2 D(L - zl] • / dug,,(u)P_l/2+ij,(u)Wz(u ). 
0 1 

Here Wz(u) is the solution of (8) for L = z,  P_l/2+ilz(u) is the Legendre function of the first kind, and 
Oo 

Kn (/z) = cosh ~r#zr -1 f dx(1 + x)-'~P_l/2+O, (x). Without loss of generality, we made the origin of coordinates 
1 

coincident with the medium's left boundary L0 = 0. 
Let us describe the asymptotic behavior of the intensity L/)  >> 1. In this case, the regularities of 

variation in (I~) will be of a general character, while the specific character of slug flow consists in the 
condition of validity of the above inequality. The spatial distribution of the intensity and its higher moments 
differ entirely. Thus, according to [13], 

0 (z/L < 0.5), 
0.5 (z/L = 0.5), 
1 (0.5 < z/L). 

The more accurate estimate [14] shows that the transition zone is ,-.,L 1/2 in size. 
For higher moments, the medium's layer is divided into three areas [8]: for 0 ~ z /L  <~ 0.5(1-vf i  " - n-2), 

the moments are exponentially small; for 0.5(1 - v/i'-Z"~ ~ )  < z /L < (1 - 1/(2n)), they are exponentially 
large and reach the maxima with z /L = 0.5(I~)max ~ exp[/)L(n 2 - 1)/4], and for (1 - 1/(2n)) < z/L < 1, 
they tend to unity by an exponential law. 

In interpreting the behavior of the intensity moments, it should be noted that an increase in the higher 
moments in the central area does not imply by any means an exponential increase in the energy characteristics 
of the acoustic field. The energy flux 

1 (Pv* + vP*) = 1 (1 - iR(z ) i  I (z ,  L) 
g = .4 2 (1 + R(z))(1 + R*(z))zl 

is an integral of motion, and for every realization, this flux is a constant in the entire slug-structure area. 
The growth of moments corresponds to the existence of intensity overshoots, which is confirmed by 

the numerical-simulation results [8]. This circumstance can prove to be very important and lead to gas-slug 
collapse when a wave of not very high intensity is incident on the medium. 
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